Corrosion Behavior of X65 Steel by Sulphate Reducing Bacteria (SRB) in Acetic Acid Environment

HE Tingting, FENG Yi, YAN Huayun, WANG Maomao, YU Haitao, CHEN Yingfeng, LU Kejie

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (9) : 138-146.

PDF(7869 KB)
PDF(7869 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (9) : 138-146. DOI: 10.7643/ issn.1672-9242.2025.09.015
Key Projects Equipment

Corrosion Behavior of X65 Steel by Sulphate Reducing Bacteria (SRB) in Acetic Acid Environment

  • HE Tingting1, FENG Yi2,*, YAN Huayun1, WANG Maomao2, YU Haitao1, CHEN Yingfeng2, LU Kejie1
Author information +
History +

Abstract

The work aims to study the growth pattern of SRB in different acetic acid concentration media and the effect of SRB on the corrosion behavior of X65 steel in different acetic acid environments. The study was conducted by electrochemical tests, static immersion corrosion tests and surface morphology analysis. The results showed that the concentration of SRB was significantly higher in the acetic acid-containing system than in the acetic acid-free system, and the growth process could be divided into a rapid growth period (0 d-7 d) and a decline period (7 d-14 d). In the acetic acid-free system, the X65 steel mainly underwent uniform corrosion, with a uniform corrosion rate ranged from 0.204 mm/a to 0.225 mm/a, and the corrosion product was Fe3O4. In the acetic acid-containing system, local corrosion pits were formed on the sample surface, with rod-shaped SRB bacteria visible inside the pits. The corrosion products were Fe3O4 and FeS, and the local corrosion rate ranged from 0.365 mm/a to1.564 mm/a, while the uniform corrosion rate ranged from 0.046 mm/a to 0.068 mm/a. With the prolongation of immersion time, the electrochemical corrosion rate and local corrosion rate showed a decreasing trend. The addition of acetic acid significantly increases the concentration of SRB, a large number of SRB attach to the surface of X65 steel, its metabolic process, metabolic products and corrosion product film together lead to significant changes in the corrosion mechanism. The uniform corrosion tendency is reduced, but the risk of local corrosion increases significantly.

Key words

acetic acid / sulphate-reducing bacteria (SRB) / microbiological corrosion / corrosion behavior / local corrosion / X65 steel

Cite this article

Download Citations
HE Tingting, FENG Yi, YAN Huayun, WANG Maomao, YU Haitao, CHEN Yingfeng, LU Kejie. Corrosion Behavior of X65 Steel by Sulphate Reducing Bacteria (SRB) in Acetic Acid Environment[J]. Equipment Environmental Engineering. 2025, 22(9): 138-146 https://doi.org/10.7643/ issn.1672-9242.2025.09.015

References

[1] SUN M, WANG X H, CUI W.Corrosion Behavior of X60 Pipeline Steel in the Presence of Sulfate Reducing Bacteria Cultured in Seawater and Mud from the East China Sea[J]. Measurement: Sensors, 2024, 34: 101266.
[2] 胥聪敏, 张津瑞, 朱文胜, 等. D-氨基酸对不同钢材混合菌腐蚀行为的影响[J]. 材料研究学报, 2023, 37(12): 924-932.
XU C M, ZHANG J R, ZHU W S, et al.Effect of D-Amino Acids on Corrosion Behavior of Different Steels Due to Mixed Bacteria[J]. Chinese Journal of Materials Research, 2023, 37(12): 924-932.
[3] UGARTE E R, SALEHI S.A Review on Well Integrity Issues for Underground Hydrogen Storage[J]. Journal of Energy Resources Technology, 2022, 144(4): 042001.
[4] 姜慧芳, 刘扬豪, 刘莹, 等. 地下储氢库J55钢氢环境下微生物腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
JIANG H F, LIU Y H, LIU Y, et al.Mechanism of Microbial Corrosion of J55 Steel in Hydrogencontaining Environments in Underground Hydrogen Storage Facilities[J]. Journal of Chinese Society for Corrosion and Protection, 2025, 45(2): 347-358.
[5] LI Y C, FENG S Q, LIU H M, et al.Bacterial Distribution in SRB Biofilm Affects MIC Pitting of Carbon Steel Studied Using FIB-SEM[J]. Corrosion Science, 2020, 167: 108512.
[6] 杨帆, 朱世东, 张锦刚, 等. 油气田中常见微生物腐蚀研究进展[J]. 表面技术, 2024, 53(18): 55-66.
YANG F, ZHU S D, ZHANG J G, et al.Research Progress of Common Microbial Corrosion in Oil and Gas Fields[J]. Surface Technology, 2024, 53(18): 55-66.
[7] LIU X Z, WANG Y H, SONG Y W, et al.The Respective Roles of Sulfate-Reducing Bacteria (SRB) and Iron-Oxidizing Bacteria (IOB) in the Mixed Microbial Corrosion Process of Carbon Steel Pipelines[J]. Corrosion Science, 2024, 240: 112479.
[8] 吕美英, 李振欣, 杜敏, 等. 培养基对微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
LYU M Y, LI Z X, DU M, et al.Effect of Culture Medium on Microbiologically Influenced Corrosion[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(6): 757-764.
[9] SUN M Q, YANG J, WANG Z B, et al.Effect of Coexistence of Sulfate Reducing Bacteria and Nitrate Reducing Bacteria on the Under-Deposit Corrosion of Carbon Steel[J]. Corrosion Science, 2024, 231: 111958.
[10] FAN F Q, ZHANG B Y, LIU J B, et al.Towards Sulfide Removal and Sulfate Reducing Bacteria Inhibition: Function of Biosurfactants Produced by Indigenous Isolated Nitrate Reducing Bacteria[J]. Chemosphere, 2020, 238: 124655.
[11] 青佳奕, 丁阿强, 全林, 等. 页岩气管道微生物腐蚀及其防控研究进展[J]. 环境化学, 2025, 44(4): 1404-1416.
QING J Y, DING A Q, QUAN L, et al.Advances in Microbiologically Influenced Corrosion in Shale Gas Pipelines and Its Prevention and Control[J]. Environmental Chemistry, 2025, 44(4): 1404-1416.
[12] LI L H, GONG B, YUAN Y, et al.The Influence of HAc on Carbon Steel of CO2 Corrosion[J]. Journal of Natural Gas Science and Engineering, 2014, 32(3): 50.
[13] LI Y Z, XU N, LIU G R, et al.Crevice Corrosion of N80 Carbon Steel in CO2-Saturated Environment Containing Acetic Acid[J]. Corrosion Science, 2016, 112: 426-437.
[14] LIAO K X, LENG J H, HUANG Q, et al.The Effect of Acetic Acid on the Localized Corrosion of 3Cr Steel in the CO2-Saturated Oilfield Formation Water[J]. International Journal of Electrochemical Science, 2020, 15(9): 8622-8637.
[15] TALUKDAR A, RAJARAMAN P V.Effect of Acetic Acid in CO2-H2S Corrosion of Carbon Steel at Elevated Temperature[J]. Materials Today: Proceedings, 2022, 57: 1842-1845.
[16] LI P, DU M, HOU J, et al.Corrosion Behavior of 316L Stainless Steel in Oilfield Produced Water in Presence of CO2 and Acetic Acid[J]. International Journal of Electrochemical Science, 2020, 15(5): 4287-4307.
[17] LI Y Z, XU N, GUO X P, et al.The Role of Acetic Acid or H+ in Initiating Crevice Corrosion of N80 Carbon Steel in CO2-Saturated NaCl Solution[J]. Corrosion Science, 2017, 128: 9-22.
[18] 周涛, 徐向荣, 徐浩, 等. 基于渗透压理论对细菌生物膜生长的研究[J]. 井冈山大学学报(自然科学版), 2014, 35(5): 33-37.
ZHOU T, XU X R, XU H, et al.Research of Bacterial Biofilm Growth Based on Osmotic Pressure Theory[J]. Journal of Jinggangshan University (Natural Science), 2014, 35(5): 33-37.
[19] 张斐, 王海涛, 何勇君, 等. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
ZHANG F, WANG H T, HE Y J, et al.Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(6): 795-803.
[20] 吕茜娣, 廖柯熹, 陈晓明, 等. SRB对20碳钢在气田采出水中腐蚀行为的影响[J]. 材料保护, 2019, 52(8): 88-94.
LYU X D, LIAO K X, CHEN X M, et al.Effects of SRB on Corrosion Behavior of Carbon Steel 20 in Produced Water of Gasfield[J]. Materials Protection, 2019, 52(8): 88-94.
[21] 舒韵, 闫茂成, 魏英华, 等. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
SHU Y, YAN M C, WEI Y H, et al.Characteristics of SRB Biofilm and Microbial Corrosion of X80 Pipeline Steel[J]. Acta Metallurgica Sinica, 2018, 54(10): 1408-1416.
[22] 刘芯月, 张兰, 岳明, 等. L360N管线钢在页岩气田采出水中硫酸盐还原菌作用下的腐蚀行为[J]. 机械工程材料, 2022, 46(4): 63-68.
LIU X Y, ZHANG L, YUE M, et al.Corrosion Behavior of L360N Pipeline Steel under Action of Sulfate-Reducing Bacteria in Produced Water of a Shale Gas Field[J]. Materials for Mechanical Engineering, 2022, 46(4): 63-68.
[23] 陈旭, 李帅兵, 郑忠硕, 等. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
CHEN X, LI S B, ZHENG Z S, et al.Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivity at Daqing Area[J]. Journal of Chinese Society for Corrosion and Protection, 2020, 40(2): 175-181.
[24] 万红霞, 李婷婷, 宋东东, 等. X80管线钢在硫酸盐还原菌作用下的腐蚀行为[J]. 表面技术, 2020, 49(9): 281-290.
WAN H X, LI T T, SONG D D, et al.Effect of SRB on Corrosion Behavior of X80 Pipeline Steel[J]. Surface Technology, 2020, 49(9): 281-290.
[25] 宋秀兰, 李亚新. 乙酸、丙酸和丁酸为SRB碳源时的利用率[J]. 中国矿业大学学报, 2007, 36(4): 527-530.
ONG X L, LI Y X.Utilization Ratio of Acetic, Propionic and N-Butyric Acids Used as Carbon Sources of SRB[J]. Journal of China University of Mining & Technology, 2007, 36(4): 527-530.
[26] 肖利萍, 张镭, 李月. 硫酸盐还原菌及其在废水厌氧治理中的应用[J]. 水资源与水工程学报, 2011, 22(1): 45-49.
XIAO L P, ZHANG L, LI Y.Application of Sulfate-Reducing Bacteria to Anaerobic Wastewater Treatment[J]. Journal of Water Resources and Water Engineering, 2011, 22(1): 45-49.
[27] 聂淑坤, 许凤玲, 刘钊慧, 等. 硫酸盐还原菌对船体低合金裸钢腐蚀行为的影响[J]. 材料开发与应用, 2023, 38(1): 29-41.
NIE S K, XU F L, LIU Z H, et al.Effect of Sulfate-Reducing Bacteria on Corrosion Behavior of the Low-Alloy Bare Steel for Hull[J]. Development and Application of Materials, 2023, 38(1): 29-41.
PDF(7869 KB)

Accesses

Citation

Detail

Sections
Recommended

/